Reply to this topicStart new topicStart Poll

> 推理遊戲9 - 硬幣, Weighing again
Pearltea
發表於: Jan 27 2016, 21:04  評價+1
Quote Post


四品官
*********

發表數: 1,289
所屬群組: 太守
註冊日期: 9-22-2003

活躍:5
聲望:614


Similar to the one posted before (http://hksan.net/forum/index.php?showtopic=15677)

有27枚硬幣, 26枚的重量是10g, 1枚的重量不同 (可以是9g 或 11g). 

用平衡秤, 最少要量多少次才能找出不同重量的一枚?  (要找出不同的一枚是較輕或較重)
PMEmail Poster
Top
雞仔嘜
發表於: Jan 28 2016, 08:04  評價+2
Quote Post


真正的天才是1%的天份+99%的努力
************

發表數: 3,307
所屬群組: 一般
註冊日期: 6-27-2004

活躍:15
聲望:697


QUOTE (Pearltea @ Jan 28 2016, 05:04 )
Similar to the one posted before (http://hksan.net/forum/index.php?showtopic=15677)

有27枚硬幣, 26枚的重量是10g, 1枚的重量不同 (可以是9g 或 11g). 

用平衡秤, 最少要量多少次才能找出不同重量的一枚?  (要找出不同的一枚是較輕或較重)

26次 twisted.gif


--------------------
永遠懷念我的公公、嫲嫲、婆婆。
PMEmail PosterUsers Website
Top
XxEDxX
發表於: Jan 28 2016, 10:24  評價+1
Quote Post


三品官
**********

發表數: 1,467
所屬群組: 太守
註冊日期: 8-30-2011

活躍:8
聲望:507


QUOTE (Pearltea @ Jan 28 2016, 05:04 )
Similar to the one posted before (http://hksan.net/forum/index.php?showtopic=15677)

有27枚硬幣, 26枚的重量是10g, 1枚的重量不同 (可以是9g 或 11g). 

用平衡秤, 最少要量多少次才能找出不同重量的一枚?  (要找出不同的一枚是較輕或較重)

4次?
PM
Top
XxEDxX
發表於: Jan 28 2016, 14:12  評價+1
Quote Post


三品官
**********

發表數: 1,467
所屬群組: 太守
註冊日期: 8-30-2011

活躍:8
聲望:507


QUOTE (XxEDxX @ Jan 28 2016, 18:24)
QUOTE (Pearltea @ Jan 28 2016, 05:04)
Similar to the one posted before (http://hksan.net/forum/index.php?showtopic=15677)

有27枚硬幣, 26枚的重量是10g, 1枚的重量不同 (可以是9g 或 11g). 

用平衡秤, 最少要量多少次才能找出不同重量的一枚?  (要找出不同的一枚是較輕或較重)

4次?

Just back home and here is my approach: (in white)

Similar to the one posted before:

1. split them into three equal piles (9-9-9: named as pile A,B,C; 1~9,10~18,19~27) and weigh two piles (let's say piles A,B) first. [first weighing]

2. if equal, then examine the remaining pile in the similar approach (so hereafter I will focus on most of the unbalanced scenarios, the case of balanced weight could be left as exercise for interested readers)

3. so assume left is lighter than right, then put 7~9,16~18 aside; weigh 1~3+10~12 on the left and 4~6+13~15 on the right [second weighing]

4. if left is still lighter, the odd is in 1~3,13~15; otherwise it is in 4~6,10~12;

5. then we have only 6 suspects here and two weighings left. 

6. assume the left is still lighter, so the odd is in 1~3,13~15; put 3,15 aside; weigh 1,14 on the left and 2,13 on the right [third weighing]

7. if it is balanced, then the odd one is either 3 or 15. 

if the left is still lighter, then the odd one is either 1 or 13. (either 1 lighter or 13 heavier)

if the balance shifts, then the odd one is either 2 or 14. (either 2 lighter or 14 heavier)

8. So, we have two coins left and one weighing left. Just weigh any one of them VS a normal one and see if it is heavier or lighter. [final weighing]

Any comments or corrections are most welcome!
PM
Top
Pearltea
發表於: Jan 28 2016, 14:44  
Quote Post


四品官
*********

發表數: 1,289
所屬群組: 太守
註冊日期: 9-22-2003

活躍:5
聲望:614


QUOTE (雞仔嘜 @ Jan 28 2016, 16:04 )
QUOTE (Pearltea @ Jan 28 2016, 05:04)
Similar to the one posted before (http://hksan.net/forum/index.php?showtopic=15677)

有27枚硬幣, 26枚的重量是10g, 1枚的重量不同 (可以是9g 或 11g). 

用平衡秤, 最少要量多少次才能找出不同重量的一枚?  (要找出不同的一枚是較輕或較重)

26次 twisted.gif

好吧,只要不是27次還算可以  twisted.gif
PMEmail Poster
Top
Pearltea
發表於: Jan 28 2016, 15:26  
Quote Post


四品官
*********

發表數: 1,289
所屬群組: 太守
註冊日期: 9-22-2003

活躍:5
聲望:614


QUOTE (XxEDxX @ Jan 28 2016, 22:12 )
QUOTE (XxEDxX @ Jan 28 2016, 18:24)
QUOTE (Pearltea @ Jan 28 2016, 05:04)
Similar to the one posted before (http://hksan.net/forum/index.php?showtopic=15677)

有27枚硬幣, 26枚的重量是10g, 1枚的重量不同 (可以是9g 或 11g). 

用平衡秤, 最少要量多少次才能找出不同重量的一枚?  (要找出不同的一枚是較輕或較重)

4次?

Just back home and here is my approach: (in white)

I had the same approach! (Even grouping them into A/B/C and numbering them from 1-27!)
One of the solutions was the easiest and most efficient but literally drove me nuts! 
Hint: Weigh twice to find out whether the odd one is lighter or heavier.
PMEmail Poster
Top
neveryield
發表於: Jan 28 2016, 23:37  
Quote Post


一品官
************

發表數: 2,057
所屬群組: 一般
註冊日期: 9-30-2010

活躍:12
聲望:529


也許是54次吧,逐枚秤,而且要覆檢。


--------------------
世間之事,惟鬥爭已。

既便你達成了那最高尚的目的,亦無法彌補因为你採用了最卑劣的手段所帶来的恶劣影響。

一碗醇酒拈手來,坐看洪流不復來
經年不見花已殘,舊日芳人何處尋
開醰陳酒香四溢,醉臥山河愁不還
倒酒為河,夾肉為林,有此佳肴,何以為憂?
眾人皆醒,唯我猶夢中,不知年日,問長城依舊?

一竹獨行,十木皆枯,百里無塵,千秋不還。
日月更年,星晨生息,西海東來,南松北往。
還看舊地,天移地去,綠葉無蹤,礫石為孤。
蒼蒼茫茫,滴水沉泥,青草既出,逝會歸回?

大雪連綿千幾里,孤房門角一窗櫺,
老湖中間一條狗,獨坐冰樹望烏雲。

杯中良酒回回香,甘甜酒辣酸辛苦,
佳陳何止千百變,喜愁哀樂豈無嚐?
PMEmail PosterUsers Website
Top
Pearltea
發表於: Jan 29 2016, 00:16  
Quote Post


四品官
*********

發表數: 1,289
所屬群組: 太守
註冊日期: 9-22-2003

活躍:5
聲望:614


QUOTE (neveryield @ Jan 29 2016, 07:37)
也許是54次吧,逐枚秤,而且要覆檢。

那要用27P2 =702才夠準確呀 

本篇文章已被 Pearltea 於 Jan 29 2016, 00:24 編輯過
PMEmail Poster
Top
XxEDxX
發表於: Jan 29 2016, 08:21  
Quote Post


三品官
**********

發表數: 1,467
所屬群組: 太守
註冊日期: 8-30-2011

活躍:8
聲望:507


QUOTE (Pearltea @ Jan 28 2016, 23:26 )
QUOTE (XxEDxX @ Jan 28 2016, 22:12)
QUOTE (XxEDxX @ Jan 28 2016, 18:24)
QUOTE (Pearltea @ Jan 28 2016, 05:04)
Similar to the one posted before (http://hksan.net/forum/index.php?showtopic=15677)

有27枚硬幣, 26枚的重量是10g, 1枚的重量不同 (可以是9g 或 11g). 

用平衡秤, 最少要量多少次才能找出不同重量的一枚?  (要找出不同的一枚是較輕或較重)

4次?

Just back home and here is my approach: (in white)

I had the same approach! (Even grouping them into A/B/C and numbering them from 1-27!)
One of the solutions was the easiest and most efficient but literally drove me nuts! 
Hint: Weigh twice to find out whether the odd one is lighter or heavier.

OMG... is it weighing pile A VS pile B and then weighing pile A vs pile C...
PM
Top
Pearltea
發表於: Jan 29 2016, 19:49  
Quote Post


四品官
*********

發表數: 1,289
所屬群組: 太守
註冊日期: 9-22-2003

活躍:5
聲望:614


QUOTE (XxEDxX @ Jan 29 2016, 16:21 )
OMG... is it weighing pile A VS pile B and then weighing pile A vs pile C...

Yes  tongue.gif (Smiley smile is invincible but not invisible)
PMEmail Poster
Top
1 位使用者正在閱讀本主題 (1 位訪客及 0 位匿名使用者)
0 位會員:

Topic Options Reply to this topicStart new topicStart Poll

 



[ Script Execution time: 0.0132 ]   [ 12 queries used ]   [ GZIP 啟用 ]