香港三國志 · 版規 | 說明 搜尋 會員 聲望 日曆 統計 |
歡迎訪客 ( 登入 | 註冊 ) | 重寄認證電子郵件 |
Pearltea | |
四品官 發表數: 1,289 所屬群組: 太守 註冊日期: 9-22-2003 活躍:5 聲望:614 |
Similar to the one posted before (http://hksan.net/forum/index.php?showtopic=15677)
有27枚硬幣, 26枚的重量是10g, 1枚的重量不同 (可以是9g 或 11g). 用平衡秤, 最少要量多少次才能找出不同重量的一枚? (要找出不同的一枚是較輕或較重) |
雞仔嘜 | |||
真正的天才是1%的天份+99%的努力 發表數: 3,307 所屬群組: 一般 註冊日期: 6-27-2004 活躍:15 聲望:697 |
26次 -------------------- 永遠懷念我的公公、嫲嫲、婆婆。
|
||
XxEDxX | |||
三品官 發表數: 1,467 所屬群組: 太守 註冊日期: 8-30-2011 活躍:8 聲望:507 |
4次? |
||
XxEDxX | |||||
三品官 發表數: 1,467 所屬群組: 太守 註冊日期: 8-30-2011 活躍:8 聲望:507 |
Just back home and here is my approach: (in white) Similar to the one posted before: 1. split them into three equal piles (9-9-9: named as pile A,B,C; 1~9,10~18,19~27) and weigh two piles (let's say piles A,B) first. [first weighing] 2. if equal, then examine the remaining pile in the similar approach (so hereafter I will focus on most of the unbalanced scenarios, the case of balanced weight could be left as exercise for interested readers) 3. so assume left is lighter than right, then put 7~9,16~18 aside; weigh 1~3+10~12 on the left and 4~6+13~15 on the right [second weighing] 4. if left is still lighter, the odd is in 1~3,13~15; otherwise it is in 4~6,10~12; 5. then we have only 6 suspects here and two weighings left. 6. assume the left is still lighter, so the odd is in 1~3,13~15; put 3,15 aside; weigh 1,14 on the left and 2,13 on the right [third weighing] 7. if it is balanced, then the odd one is either 3 or 15. if the left is still lighter, then the odd one is either 1 or 13. (either 1 lighter or 13 heavier) if the balance shifts, then the odd one is either 2 or 14. (either 2 lighter or 14 heavier) 8. So, we have two coins left and one weighing left. Just weigh any one of them VS a normal one and see if it is heavier or lighter. [final weighing] Any comments or corrections are most welcome! |
||||
Pearltea |
發表於: Jan 28 2016, 14:44
|
||||
四品官 發表數: 1,289 所屬群組: 太守 註冊日期: 9-22-2003 活躍:5 聲望:614 |
好吧,只要不是27次還算可以 |
||||
Pearltea |
發表於: Jan 28 2016, 15:26
|
||||||
四品官 發表數: 1,289 所屬群組: 太守 註冊日期: 9-22-2003 活躍:5 聲望:614 |
I had the same approach! (Even grouping them into A/B/C and numbering them from 1-27!) One of the solutions was the easiest and most efficient but literally drove me nuts! Hint: Weigh twice to find out whether the odd one is lighter or heavier. |
||||||
neveryield |
發表於: Jan 28 2016, 23:37
|
一品官 發表數: 2,057 所屬群組: 一般 註冊日期: 9-30-2010 活躍:12 聲望:529 |
也許是54次吧,逐枚秤,而且要覆檢。
-------------------- 世間之事,惟鬥爭已。
既便你達成了那最高尚的目的,亦無法彌補因为你採用了最卑劣的手段所帶来的恶劣影響。 一碗醇酒拈手來,坐看洪流不復來 經年不見花已殘,舊日芳人何處尋 開醰陳酒香四溢,醉臥山河愁不還 倒酒為河,夾肉為林,有此佳肴,何以為憂? 眾人皆醒,唯我猶夢中,不知年日,問長城依舊? 一竹獨行,十木皆枯,百里無塵,千秋不還。 日月更年,星晨生息,西海東來,南松北往。 還看舊地,天移地去,綠葉無蹤,礫石為孤。 蒼蒼茫茫,滴水沉泥,青草既出,逝會歸回? 大雪連綿千幾里,孤房門角一窗櫺, 老湖中間一條狗,獨坐冰樹望烏雲。 杯中良酒回回香,甘甜酒辣酸辛苦, 佳陳何止千百變,喜愁哀樂豈無嚐? |
Pearltea |
發表於: Jan 29 2016, 00:16
|
||
四品官 發表數: 1,289 所屬群組: 太守 註冊日期: 9-22-2003 活躍:5 聲望:614 |
那要用27P2 =702才夠準確呀 本篇文章已被 Pearltea 於 Jan 29 2016, 00:24 編輯過 |
||
XxEDxX |
發表於: Jan 29 2016, 08:21
|
||||||||
三品官 發表數: 1,467 所屬群組: 太守 註冊日期: 8-30-2011 活躍:8 聲望:507 |
OMG... is it weighing pile A VS pile B and then weighing pile A vs pile C... |
||||||||
Pearltea |
發表於: Jan 29 2016, 19:49
|
||
四品官 發表數: 1,289 所屬群組: 太守 註冊日期: 9-22-2003 活躍:5 聲望:614 |
Yes (Smiley smile is invincible but not invisible) |
||